The Effects of an Exogenous Protease on the Fermentation and Nutritive Value of Corn Silage Stored at Two Temperatures

Michelle C. Windle
Limin Kung, Jr.
Starch Digestion is Highly Correlated with Milk Production

\[y = 0.1285x + 20.582 \]

\[R^2 = 0.7032 \]

Firkins et al., 2001
Accessibility of Starch in Feeds

• Starch must be accessible by bacteria in the rumen and intestine of the cow for fermentation and digestion, respectively.

• Two primary factors limit the access to starch
 – Pericarp
 – Protein/starch matrix
The Protein/Starch Matrix

- Starch is embedded in a prolamin protein matrix
 - Major amino acid: proline
 - Hydrophobic, so difficult to digest

- Acts as a barrier, hindering access to starch

- Starch-D decreases 0.86 percentage units for each unit increase in prolamin protein content (as a percent of starch)
Proteolysis of the Protein/Starch Matrix During Storage Results in Increases in Starch-D

Prior to ensiling

After 240 d of ensiling

Hoffman et al., 2011
Using a Protease to Increase Starch-D

Young et al., 2012
Effect of Temperature on Fermentation

- Protease activity is affected by pH as well as temperature
- Forages are often harvested in hot weather
- Silages heat during fermentation and retain heat during storage
- Temperature affects fermentation
 - Cool temperatures may retard fermentation
 - Warm temperatures (>40°C) may cause an altered or restricted fermentation
Objectives

- To evaluate the potential use of exogenous proteases to improve ruminal starch digestion after short periods of ensiling.

- To determine if the temperature of storage affects ruminal starch digestion with or without an exogenous protease.
Materials and Methods

• Whole plant corn was harvested at about 37.3% DM

• Forages ensiled in 5 replicated bag silos per treatment and opening

• Treatments
 – Additive: Control (C) or Protease (EZ, 2000 ppm)
 – Storage Temperatures: 22°C or 40°C

• Silages were ensiled for 0, 2, 7, 45, 90 d
Materials and Methods

• Silages analyzed for standard nutritive components and 7h *in vitro* ruminal starch digestibility (IVSD, 3 mm particle size).

• Protease activity measured using hemoglobin as a substrate
 – pH 3.6, 3.9, 4.2
 – 4°C, 22°C, 40°C

• Statistics
 – 2 × 2 × 5 factorial arrangement of treatments
 – Analyzed using the Fit Model procedure of JMP
 – Significance declared at $P \leq 0.05$
Protease Information

• The experimental metalloprotease was supplied by Novozymes, Bagsvaerd, Denmark

• Carboyhydrase activity analysis: no detectable amylase, xylanase, or endoglucanase activity
Activity of the Protease at Different pH and Temperatures

% Activity

<table>
<thead>
<tr>
<th>pH</th>
<th>Activity (°C)</th>
<th>4°C</th>
<th>22°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>c</td>
<td>f</td>
<td>ef</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- 4°C
- 22°C
- 40°C
Fermentation after 90 d

<table>
<thead>
<tr>
<th></th>
<th>Cool Untreated</th>
<th>Cool Treated</th>
<th>Hot Untreated</th>
<th>Hot Treated</th>
<th>SEM</th>
<th>Temp</th>
<th>Enz</th>
<th>Temp x Enz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3.65</td>
<td>3.58</td>
<td>3.59</td>
<td>3.60</td>
<td>0.02</td>
<td>0.28</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>Lactic acid, %</td>
<td>5.17<sup>a</sup></td>
<td>5.14<sup>a</sup></td>
<td>3.46<sup>b</sup></td>
<td>4.82<sup>a</sup></td>
<td>0.31</td>
<td><0.01</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Acetic acid, %</td>
<td>0.87<sup>a</sup></td>
<td>0.82<sup>a</sup></td>
<td>0.53<sup>b</sup></td>
<td>0.73<sup>ab</sup></td>
<td>0.05</td>
<td><0.01</td>
<td>0.15</td>
<td>0.02</td>
</tr>
<tr>
<td>WSC, %</td>
<td>0.89</td>
<td>0.89</td>
<td>2.94</td>
<td>3.38</td>
<td>0.34</td>
<td><0.01</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>Yeast, cfu/g</td>
<td>4.15</td>
<td>4.39</td>
<td>ND</td>
<td>1.47</td>
<td>0.23</td>
<td><0.01</td>
<td>0.08</td>
<td>0.19</td>
</tr>
</tbody>
</table>

- No effect of temperature/protease on pH
- Fermentation was altered in Hot silages:
 - Lower contents of lactic and acetic (esp. in untreated silages)
 - Higher concentrations of WSC
- Less yeasts in Hot silages
Starch Digestibility

% IVSD vs Days of Ensiling

- 40°C – C
- 22°C – EZ
- 22°C – C
- 40°C – EZ

Days of Ensiling

0 20 40 60 80 100

40 50 60 70
Conclusions

• Although temperature does affect proteolysis during ensiling (as measured by sol-N), temperature alone does not appear to affect the increase in IVSD that occurs naturally with time.

• Adding an exogenous protease to corn silage at the time of ensiling did not result in better IVSD during the very early stages of fermentation.

• However, by 45 d, protease addition resulted in increased IVSD compared to untreated silages and the effect was greatest at 40°C.
Conclusions

• By 90 d of ensiling, IVSD was higher and similar in protease treated than in untreated silage.

• Adding an exogenous protease at the time of ensiling has the potential to improve IVSD after a moderate length of ensiling.

• Further research is needed to establish whether a lower dose of enzyme that would be economical can be established.
Thank you
Effect of Days of Ensiling on Starch Digestion in Corn Silage
Effects of a Protease Added to High Moisture Corn Prior to Ensiling

- **Starch-D**
- **Prolamin Proteins, % DM**

- **Days of ensiling**
- **Days of Ensiling**

- **Untreated**
- **Treated**

Graph showing the effects of protease addition on starch-D and prolammin proteins over days of ensiling.